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Is the Ternary R Depraved?

Graham Priest

4.1 Introduction: Routley—Meyer Semantics

When modal logic was reinvented by C. I. Lewis early in the twentieth century,
it was formulated simply as a number of axiom systems. There were certainly
intuitions which drove thoughts about what should be an axiom, and what should
not. But the axiom systems had no formal semantics. In modern logic, a system of
proof with no such semantics appears distinctly naked. In some sense, without a
semantics, we would not seem to know what the system is about. It was therefore
a happy event when world-semantics for modal logics were invented by Kripke
(and others).

In a very similar way, relevant logics were also invented (some years later) as
purely axiomatic systems. It was therefore a happy event when Routley and Meyer
(and others) produced a world-semantics for them. As they put it in the first of a
ground-breaking series of papers:!

Word that Anderson and Belnap had made a logic without semantics leaked out. Some
thought it wondrous and rejoiced, that the One True Logic should make its appearance
among us in the Form of Pure Syntax, unencumbered by all that set-theoretic garbage.
Others said that relevant logics were Mere Syntax. Surveying the situation Routley...
found an explication of the key concept of relevant implication. Building on [this], and
with help from our friends. .. we use these insights to present here a formal semantics for
the system R of relevant implication.

But critics were not impressed. The world-semantics of modal logic were certainly
contentious, but no one could deny that the notion of a possible world, and of a
binary relation of relative possibility, clearly had intuitive and relevant content.

! Routley and Meyer (1973, 199).
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The Routley-Meyer semantics, by contrast, said the critics, employed devices of a
purely technical nature. As one put it:?

[T]he Routley—Meyer semantics . . . fails to satisfy those requirements which distinguish an
illuminating and philosophically significant semantics from a merely formal model theory.

Or, as another critic put it more bluntly, commenting on the promises held out by
those who took this kind of semantics to explain why contradictions do not entail
everything: “‘What else can one do but ask for one’s money back?’

The devices in the semantics which drew the ire of critics were two:* a function, *
(the Routley Star), from worlds to worlds, employed in giving the truth conditions
of negation:*

Vi (—a) = Tiff vy« () =0

and a ternary relation, R, on worlds, employed in giving the truth conditions of
the conditional:

V(o = B) = Tiff for all x, y, such that Rwxy, when vy («) =1, vy (B) =1

The first of these is not now in such bad shape. A plausible understanding of
the Routley * may be given in terms of a primitive notion of incompatibility.®
Matters with the ternary relation are in a less happy state. Some interpretations
have certainly been put forward. The most successful so far, I think, is in terms
of the notion of information flow, suggested by a connection between relevant
semantics and situation semantics.” But even this appears somewhat tenuous.® The
following question is still, therefore, a pressing one: what, exactly, does the ternary
relation mean, and why is it reasonable to employ it in giving the truth conditions
of a conditional? In what follows, I will attempt an answer to the question.

4.2 Validity

Before I turn to this matter, however, it will be useful to take a step back, and put
the matter in perspective, so that we can see what is being asked of the semantics
and why. Let’s start at the beginning.

2 Copeland (1979, 400). He repeats the charge in Copeland (1983), citing others who have made
the similar claims: Scott, van Bentham, Hintikka, Keilkopf, and (David) Lewis.

3 Smiley (1993, 19).

4 Tt it worth noting that there are semantics for relevant logics which avoid both of these techniques.
See Priest (2008, chs. 8, 9).

5 vy () = 1[0] means that the value of & at world w is true[false].

6 Asin Restall (1999).

7 See, for example, Restall (1995), Mares (1997). 8 See Priest (2008, 10.6.)
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When we reason, we deploy premises and conclusions. Successful reasoning
requires that the premises really do support that conclusion: that is, that the
argument is valid. Logic is essentially the study of validity. We need a logical theory
to tell us which inferences are valid and which are not. But the theory should do
more than just give us two washing lists: logic, like, arguably, any science, should
explain the why of things. Without understanding why things are valid, we are in
no position, for example, to evaluate inferences that do not, as yet, appear on either
list, or to adjudicate disputes about whether something should be on one or other
of the lists.

Now, again, when we reason, we reason in a natural language. The language may
be augmented by technical notions, such as those of physics or mathematics; but
itis a natural language nonetheless. The notion of validity which logic investigates
must apply to such arguments. However, in the methodology of modern logic,
an account of validity is given, not for natural languages, but for various formal
languages. Of course, there must be a connection. Some, such as Montague, have
taken English itself to be a formal language. This is somewhat implausible. No
one ever used a formal language to write poetry or make jokes. And even if
English is a formal language, it is not one of those which is in standard use in
logic (e.g. the first-order predicate calculus). Perhaps more plausibly, the formal
languages we use can be thought of as providing reliable models (in the scientists’
sense) of certain aspects of natural language. Thus, a correlation is made between
certain formal symbols and certain worlds of natural language. Standardly, */\’ is
paired with ‘and; ‘=’ with if} ‘v’ with “for all} and so on. No one would suppose
that the formal symbol behaves exactly as does its natural-language counterpart.
For example, ‘and’ is much more versatile, often in an idiosyncratic way, than is
/\. Nonetheless the behaviour of /\” provides a model of certain key aspects of
the behavior of ‘and’; and so on for the other paired symbols. How exactly to
understand this is a hard matter, which, fortunately, we may bypass here. The
important point is that once we have an account of the validity of inferences in
the formal language, the correlation will provide, transitively, an account for the
natural-language inferences.

We are not at the why of the matter yet, though. We still want for an account
of why the inferences of the squiggle language are valid or invalid. In particular,
any appeal to what is valid or invalid in natural language will not provide the
required explanation of why certain inferences in the squiggle language are valid
or invalid; for understanding validity in the formal language was meant to deliver
an understanding of natural language validity, not the other way around.

So how is this to be provided? In modern logical methodology, two very
different strategies for solving the problem are commonly espoused: one is proof-
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theoretic; the other is model-theoretic. The proof-theoretic strategy applies, as
far as I am aware, only to deductive validity. The thought is that an inference is
valid in virtue of the meanings of some of the symbols involved. The meanings are
constituted, in turn, by the rules of inference governing these constituents. There
are many obstacles to pursuing this strategy successfully. However, this approach
is not my concern here, and I mention it only to set it aside. Our focus is on the
other strategy.’

4.3 Pure and Applied Semantics

The model-theoretic strategy is quite different, and can be applied to both deduc-
tive and inductive inference.'® We define certain set-theoretic structures called
interpretations, and also what it means for a sentence of our formal language to
hold in an interpretation. A valid inference is one the conclusion of which holds
in every interpretation in which all the premises hold.!" So much is easy. But
we hardly have something which gives us the why of validly yet. An arbitrary
semantics of this kind will not provide it. Thus, for example, we can give a
semantics for intuitionist logic in which interpretations have as a component
a topological space; sentences are assigned open subsets of the space, and the
sentences that hold in the interpretation are the ones that get assigned the whole
space. There is no reason whatever (at least without a very much longer story) as to
why the fact that an inference preserves taking as a value the whole of a topological
space should explain how it is that the premises of a valid argument provide any
rational ground for the conclusion.

If this is not clear, just recall that given any set of rules that is closed under
uniform substitution, we can construct a many-valued semantics in a purely
formulaic way. The values are the formulas themselves; the designated values are
the theorems, and the sentences which hold in the interpretation are those which
get designated values. Given some fairly minimal conditions, it can be shown
that an inference is vouchsafed by the rules iff it is valid in this model theory.!?
A semantic construction which can be made to fit virtually any set of inferences
whatever, does not have the discrimination required to justify any one of them.

We are forced to distinguish, then, between a model theory with explanatory
grunt, and one without. The distinction is a well-acknowledged one, though

9 In Priest (2006, ch. 11), the proof-theoretic strategy is discussed at length, and I argue that it
cannot, in the end, be made to work.
10 See Priest (2006, ch. 11).
1 Or every interpretation of a certain kind, in the inductive case.
12 See Priest (2008, 710.9-7.10.10).
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terminology and a precise characterization vary. One fairly standard account of
it is given by Haack, who calls the distinction one between a formal semantics
and an applied semantics—or, following Plantinga (1979), a pure and a depraved
semantics. For her, any construction of the kind I have described is a formal
(pure) semantics. An applied (depraved) semantics is a pure semantics which has
a suitable interpretation. She describes the matter as follows:'?

I distinguished ... four aspects relevant to one’s understanding of ordinary, non-modal
sentence logic; the distinction applies, equally, to modal logic. One has:

(i) the syntax of the formal language
(ii) informal readings of (i)
(iii) formal semantics for (i) (pure semantics)
(iv) informal account of (iii) (‘depraved semantics’)

In the case of the sentence calculus, the formal semantics (iii) supplies a mathematical
construction in which one of t, f is assigned to wifs of the calculus, and in terms of which
(semantic) validity is defined and consistency and completeness results proved. For all the
formal semantics tells one, however, the calculus could be a notation representing electrical
circuits, with ‘t” standing for ‘on, and “f’ for ‘off’...But the claim of the calculus to be a
sentence logic, to represent arguments the validity of which depends upon their molecular
sentential structure, depends on one’s understanding the formal semantics in such a way
that ‘t” represents truth and ‘f’ falsehood; it depends, in other words, on the informal
account of the formal semantics—Ilevel (iv).

Dummett characterizes the distinction as one between a semantic notion of
logical consequence, properly so called, and a merely algebraic one. For him, the
difference is that, in the former, the notions involved must themselves be semantic
ones, having an appropriate connection to meaning:'

We have examples of purely algebraic [interpretations]. For instance, the topological
interpretations of intuitionist logic were developed before any connection was made
between them and the intended meanings of the intuitionistic logical constants. Thus,
intuitionistic sentential and predicate logic is complete with respect to the usual topology
on the real line, under a suitable interpretation, relative to that topology, of the sentential
operators and quantifiers. No one would think of this as in any sense giving the meanings
of the intuitionistic logical constants, because we have no idea what it would mean to assign
an actual statement, framed within first-order logic, a ‘value’ consisting of an open subset
of the real line.

Semantic [interpretations] are framed in terms of concepts which are taken to have a
direct relation to the use which is made of the sentences of a language; to take the most
obvious example, the concepts of truth and falsity. It is for this reason that the definition of
the semantic valuation of the formula under a given interpretation of its schematic letters is

13 Haack (1978, 188f). 14 Dummett (1975, 293 of reprint).
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thought of as giving the meanings of the logical constants. Corresponding algebraic notions
define a valuation as a purely mathematical object—an open set, or a natural number—
which has no intrinsic connection with the uses of sentences.

Though Haack and Dummett characterize the distinction differently, the differ-
ence between them is, I think, somewhat superficial. Both agree on the funda-
mental point: to have a model-theory with philosophical grunt, the notions used
in the model-theoretic construction must be ones which either are, or may be
interpreted as, intrinsically semantic ones—something, to put it in Fregean terms,
to do with sense and reference. That Routley-Meyer semantics are not of this kind
is essentially the critics’ complaint. Thus Copeland again:*®

The key semantical function of [Routley and Meyer’s] theory [truth at a point in an
interpretation] receives no more than a bare formal treatment in their writings, and we
are offered no explanation of how the formal account of the logical constants given in the
theory is to be related to the body of linguistic practices within which the logical constants
receive their meaning. The Routley—Meyer ‘semantics’ as it stands, then, is merely a formal
model-theoretic characterisation of the set of sentences provable in NR, no connection
being exhibited between the assessment of validity and the intended meanings of the logical
constants. .. it is totally unclear what account of the meanings of the logical constants is
given in the Routley—Meyer ‘semantics.

4.4 Model-Theoretic Validity

None of this is to disparage the usefulness of pure semantics. Clearly, such
semantics are very useful in proving various metatheoretic results concerning
independence, and so on. But for a semantics to give us an account of the why
of validity, its notions must be (interpretable as) semantic in an appropriate way.
But what way?

When we reason, we reason about all sorts of situations: actual, merely possible,
and maybe impossible as well. Deductive reasoning is useful because a valid
argument is one which gives us a guarantee that whatever situation we are
reasoning about, if the premises are true of that situation, so is the conclusion. This
is exactly what an applied semantics is all about. Its interpretations are not literally
situations—at least, certainly not in the case of actual situations: real situations are

15 Copeland (1979, 406). Copeland also requires that the semantics deliver the classical meanings
of the connectives, and especially negation. This is a much more contentious point, and he is taken
to task over the claim in Routley et al. (1982b). He replies in Copeland (1983), but I think that this
particular criticism sticks. The very issue here is whether classical semantics or relevant semantics get
the meaning of negation in the vernacular right. See Priest (2006, ch. 10, esp. 10.9).
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not sets. But the set-theoretic constructions represent situations. They do this by
sharing with them a certain structure, in virtue of which a sentence holding in an
interpretation faithfully represents being true in the situation represented.!

It should be noted, as an aside, that it would seem to be necessary on this con-
ception of model-theoretic validity that every situation about which we reason has
an appropriate set-theoretic representation, or we have no reason to suppose that
valid arguments will do the job—or better, if they do, we still lack an explanation
of why they do. This is not a toothless requirement. In fact, it is not even satisfied
by standard model theory, couched in ZF set theory. One situation about which we
reason—indeed, about which we reason when we do model theory—is set theory.
And there is no interpretation the domain of which contains all sets. This is not a
problem that arises if we use a set theory not so limited, such as a naive set theory."”
But it is a problem which must be faced if we wish to conduct our model theory
in ZF. To discuss strategies for doing this and their adequacies,'® would, however,
take us away from the matter at hand.

Part of what is normally involved in an account of truth in an interpretation is
the provision of recursive truth-in-a-model conditions for the logical operators.
The thought here is that these spell out the meanings of the operators. That the
meaning of a sentence is provided by its truth conditions is one which is widely
subscribed to in logic—though people may disagree about which notion of truth
should be deployed here: for example, whether or not it should be epistemically
constrained. The meanings of the logical operators are then naturally thought of
as being their contributions to the truth conditions of sentences in which they
occur. And this, in turn, is naturally thought of as provided by their recursive
truth conditions. Model theory adds a twist to this picture. In model theory, we
are not dealing with truth simpliciter, but with truth-in-an-interpretation—or,
at one remove, truth in a situation. The extension is a natural one, however. To
know the meaning of a sentence is not just to know what it is for it to be true
or false of some particular situation. The understanding has to be one which can
be ported to any situation with which one is presented. If someone knows what
it would be for a sentence of the form o /A  to be true in some situations but
not others, we would be disinclined to say that they knew what /\" meant. Thus,

16 Thus, to reason about a situation in which there is a desk and two books (with various
properties), take an interpretation where the domain is the set containing those three objects, the
extension of one monadic predicate, P, is the set containing the desk, the extension of another, Q, is
the set containing the books, etc. With this interpretation, sentences of the language express things
about the situation, and may be used to reason about it.

17 See Priest (2006, 11.5, 11.6). 18 Such as that in Kreisel (1967).
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the truth-in-an-interpretation conditions of a logical operator can be thought of
as specifying the meaning of that operator, and so transitively, of the vernacular
notion with which is coordinated. Of course, given any particular formal language
with its semantics, there is an issue of how good a model it is. There can be
legitimate philosophical disagreement about this. Thus, both intuitionists and
dialetheists, for example, will insist that the account of negation given in classical
semantics provides a bad model for the meaning of ordinary language negation.
Nonetheless, when the model is right, the truth conditions of the operator give its
meaning.

But what is it for a model to be right? Hard issues in the philosophy of
language lie here, such as those that divide realists and Dummettian anti-realists.
But all can agree, as Haack and Dummett insist, that for the model to be an
adequate one, the notions deployed in stating the recursive truth conditions
must be ones which are plausibly thought of as connected with the meaning of
the natural language correlate of the formal operator, and are deployed in an
appropriate fashion. Presumably, there can be no objection to stating the truth
conditions “homophonically’, as one would normally do for conjunction. In any
interpretation:

V(A B) =Tiff vy, () = Tand vy, (B) =1

That the connection is met here is patent. (Though it should be remembered that
the natural language ‘and’ is already to be understood as regimented in a certain
way.) But appropriate truth conditions are not necessarily homophonic. Thus, in
the world-semantics for modal logic, the truth conditions for O are the familiar:

v (Ox) = 1iff for all W’ such that wRW', v,/ (&) = 1

Indeed, such non-homophonic truth conditions may well be highly desirable; for
example, if our grasp of the behavior of the operator for which truth conditions
are being given is insecure, and the truth conditions are given in terms of notions
our grasp of which is more secure. However, if we are giving truth conditions for
some form of necessity, the following must be considered failures:

Vo (Ox) = 1iff f(o, w) = 37
where f is some function from sentences and worlds to numbers, and:
Vi (Ox) = Tiff v () = 1

The one does not even get to first base because, even if the definition gets the
extension of O« correct, having value 37 is not a semantic notion at all. (Just
being 37 has no connection with meaning.) In the other, truth (having value 1)
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is certainly a semantically relevant notion, but the posited connection between it
and necessity is all wrong.

What we have seen, in summary, then, is this: applied ‘semantics do not come
free. The notions deployed must be intelligible [as semantic notions] in their own
right, and their deployment in the framing of a semantics similarly s0.'* We have
seen some of the things this means. There is surely more to be said about matters.
But we at least have enough to turn, at last, to Routley-Meyer semantics.

4.5 The Ternary Relation

If Routley-Meyer semantics are to be more that merely algebraic, the ternary
relation employed must have an intuitive meaning, and one, moreover, that is
plausibly connected with conditionality. How is this to be done? I claim no
originality for the answer I will offer. In some sense, it is part of the folklore
of relevant logic.2® If what follows has any originality, it is in dragging the idea
from the subconscious of relevant logicians into the full light of day. In the rest
of this section I will describe the main idea. In the next, we will see how it is
implemented.

The idea that a proposition is a function is a familiar one in modern logic.
For example, in intensional logics one can take a proposition as a function from
worlds to truth values. One can think of this as something like the sense of the
sentence: given a world/situation, it takes us to its truth value there. The idea that
the propositional content of a conditional is a particular sort of function is also
familiar. In intuitionist logic, the semantic content of a conditional, x — f3, is a
construction which applies to any proof of « to give a proof of 3. This construction
is obviously a function. I want to suggest that the conditional in relevant logic is
also best thought of as a function. Clearly, a conditional is something which, in
some sense, takes you from its antecedent to its consequent. It is therefore natural
to think of the proposition expressed by the conditional o — 3 as a function
which, when applied to the proposition expressed by «, gives the proposition
expressed by 3. The ternary relation can be understood in these terms. Let us look
at the details.?!

19 Priest (2008, 585).

20 For example, the thought that applying a conditional is something like functional application
is found in the motivating remarks of Slaney (1990); the idea that Rxyz means that x(y) = z can
be found in Fine (1974); and Restall (2000, 12-13 and 246-8), notes the connection between relevant
conditionals and functions.

21 After this paper was written, Beall et al. (2012) was written. This offers three understandings of
the ternary relation. The one offered in this paper is the second of these.
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4.6 Interpreting Routley-Meyer Semantics

In what follows, I take it that we are dealing with a positive propositional relevant
logic, so avoiding issues to do with the Routley Star. Let us consider the most
fundamental of these, the relevant logic BT. I will discuss its extensions in the
next section.

A Routley-Meyer interpretation for this?? is a tuple (@, N, W, R, v). W is a set
of worlds (situations); N (the normal worlds) is a non-empty subset of W; @ is a
distinguished member of W; R is a ternary relation on W; v is a function which
assigns a truth value (1 or 0), vy, (p), to every parameter at each world, w.

For x,y € W, the relation x < vy is defined as follows: 3n € N, Rnxy. The
worlds of a structure must satisty the following conditions:

RO @cN

Rl x<«x

R2 Ifx < yand Ryzw then Rxzw

R3 Ifx < yandvy(p)=1 then vy (p)=1

where, in R3, p is any propositional parameter. R3 is called the heredity condition,
and, employing the truth conditions of the connectives and R2, it can be shown to
extend to all formulas, not just propositional parameters.

The truth conditions for the logical constants of the language are as follows:

Tl vy (axAB)=Tiff v, () =Tand v, (f) =1

T2 vy (aVBR)=Tiff vy, () =T orvy,(B)=1

T3 vw(ow— B) = 1iff for all x, y, such that Rwxy, when v () =1,
Vy”-)’) =1

o holds in an interpretation if ve(x) = 1, and an inference is valid if in every
interpretation in which all the premises hold, the conclusion holds.?*

We may understand the meanings of the various notions as follows. Sentences
express propositions. We do not need to worry too much about what these are;
they are just whatever it is that sentences express. I write a, b, etc. for propositions.
If oc and 3 express the propositions a and b, I write the propositions expressed
by x A B, « — B,as a/Ab,a — b, etc. We do not need to worry too much,
either, about what, exactly, worlds are. It will suffice that they are the sort of thing

22 As found, for example, in Routley et al. (1982a, 4.1-4.6). They do not include a base world, @.
Including one makes no difference to what is valid in the semantics, and brings the semantics into
line with the abstract characterization I gave.

23 Note, then, that the situation about which we reason is (represented by) @, which is to be thought
of as coming with its own raft of alternative worlds.
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characterized by a set of propositions. In fact, as a matter of convenience, we may
simply identify a world with a set of propositions. Each world is closed under
under conjunction, and is prime (that is, whenever a disjunction is a member,
so is at least one disjunct). In particular, we have, for allw € W

Pl a/Abewiffaecwandbew
P2 aVbewiffaeworbew

Further, say that a entails b just if every world that a is in, b is in. It follows that
each world is also closed under entailment.

The propositions expressed by conditionals are functions. Specifically, the
proposition a — b is a function which maps a to b. One can think of the function
as a procedure which takes certain propositions into others: one which, when
applied to the proposition expressed by «, gives one expressed by 3. Given the
conceptual connection between conditions and inference, it is natural to take this
procedure to be one grounded in inference. Thus, it might take things of a logical
form of « into things of a logical form of 3.2

Now, if x,y € W, let x[y] be:

{b: for somea €y,a — b € x}

Thus, x[y] is the result of taking any a in y, and applying any function of the form
a — b in x. Note that x[y] may not be a world. For example, there is no reason
to suppose it to be prime. However, we can use it to define the relationship R on
worlds as follows:

Rxyzisx[y] C z

In other words, Rxyz iff whenever the result of applying any function, a — b,
in x to a proposition, a, in y is in z.2° Given that a function and its application
are involved, why there should be a three-place relation is obvious: one place is
for the function; one is for its argument; and one is for its value. The third place
in the relation simply records the propositions one gets by applying the relevant
functions to the relevant arguments.

It remains to say what @, v, and N are. @ is (represents) the situation about
which we are reasoning. v,,(x) = 1 means that o is true at a w: that is, if «

24 There is a well-known connection between the Routley-Meyer semantics and the A-calculus
(and combinatory logic)—see, for example, Dunn and Meyer (1997). In the A-calculus all objects are
functions. This suggests that an investigation of the present proposal in that context might be fruitful.

25 The semantics given here are the non-simplified semantics. In the simplified semantics, to give
truth conditions for — uniformly in terms of R, we need the condition: Rnyz iff y = z (where
n is a normal world). See Priest (2008, 10.2). For this condition to hold on the present account, we
would need: n[y] C ziff y = z. This clearly fails, since we can have distinct z; and z, for which
nly] C zy and nly] C z,.
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expresses the proposition a, then a € w. The members of N are exactly those
worlds, n, such that for any a and b, a — b € n iff a entails b. Thus, since worlds
are closed under entailment, we have, for any w:

P3 Ifa—becnthenifacw,bew

Given these explanations of the semantic notions, both the conditions R0-R3, and
the truth conditions of the connectives make perfectly good sense. That is, they are
justified by these understandings.

RO says that, in the situation about which we are reasoning, — really represents
the entailment relation. That is, we may interpret sentences of the form o« — f3
as saying that « entails 3. In other words, — gets the right meaning. (This is not
a vacuous constraint, since at non-normal worlds, — may represent a different
relation.)

For R1: We need to show that, for some n € N, Rnxx: that is, n[x] C x. Choose
anyn € N, and let b € n[x]. Then for some a € x, thereisan a — b € n. By P3,
bex.

For R3: Suppose that x < y. Then for some n € N, Rnxy: that is, n[x] C y. If
a € x then, sincea — a € n, a € n[x]. So a € y. Thatis, x C y. Now suppose
that v« (p) = 1. Then if a is the proposition expressed by p, a € x. Hence, a € y:
that is, vy (p) = 1.

For R2: Suppose that x < y. Then, as we have just seen, x C y. It follows that
x[z] C ylzl. (For if b € x[z], then for some a € z,a — b € x. Since x C v,
a — b € y,sob € ylzl].) Thus, if Ryzw, that is, y[z] C w, it follows that x[z] C w:
that is, Rxzw.

Turning to the truth conditions: P1 and P2 obviously deliver T1 and T2. For T3:
Suppose that the function a — b € w, and that Rwxy: that is, w[x] C y. Then if
a € x, b € y. Conversely, if the function a — b ¢ w, then it is natural to suppose
that there are worlds, x and y, such that Rwxy, with a € x and b ¢ y. For take
a world, x, which contains just a and what it entails; we can form y by applying
all the functions ¢ — d € w to it. Because a — b ¢ w, b will not be in y. (More
precisely, if b € y, then there is something, c, entailed by a, such thatc — b € w.
But in that case, a — b would be in w, since ¢ — b entails a — b.)?¢

4.7 Extensions

Positive logics stronger than B are obtained, in a standard way, by adding
further constraints on the ternary relation. For example, the relevant logic R —

26 Essentially, this is the heuristic which is implemented in constructing the canonical model in
the completeness proof for relevant logics. See Routley et al. (1982a, 4.6).
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the strongest standard-relevant logic—is obtained by imposing the following
constraints:

R4 If Rxyz then Ryxz
R5 If Rxyz then Iw(Rxyw and Rwyz)
R6 If 3w(Rxyw and Rwuv) then Fw(Rxuw and Rywv)

The functional interpretation of R does not, in itself, make these constraints
plausible. Indeed, it makes them implausible. Consider R4. This says that for any
X Y, z, if x[y] C z then y[x] C z. x[y] is obtained by applying functions in x to
arguments in y; y[x] is obtained by applying functions in y to arguments in x.
These are not, in general, the same—functional application is not commutative!
Similarly, R5 tells us that for all x, y, z, if x[y] C z then, for some w, x[y] C w and
wly] C z. But the things guaranteed to be in w are the results of applying functions
in x to arguments in y. There is no reason to suppose that, if these are functions,
applying them to arguments in y again will give the same things: the application
of a second function could take us anywhere. Similar comments apply to R6.

In the canonical model construction, used in the completeness proofs for these
stronger logics, one invokes the appropriate axiom to show that the corresponding
constraint holds in the model. (Thus, in the case of R4, one invokes the axiom
ax— (p —v)F B — (x — v)). One might therefore appeal to the plausibility
of such inferences about conditionality to justify the corresponding constraint.
However, in this case, the semantics cannot be used to justify the properties of
the conditional, on pain of circularity. In other words, they fail to explain the why
of things, as is required for a genuine applied semantics.?” (See the discussion in
section 4.3 of appealing to the behaviour of vernacular notions.)

The interpretation of the semantics we have been looking at cannot, therefore,
be used to justify the stronger relevant logics—or if they can, this requires a much
more complicated version of the story than the one told here. Some might see this
as a vice. Personally, I see it as a virtue. One of the embarrassments of relevant
logics is their multiplicity. A challenge has always been to single out one of the
multiple as the correct relevant logic. From this perspective, the discriminating
nature of the interpretation of the Routley-Meyer semantics which I have offered
is an advantage. It is true that it does not justify the stronger relevant logics, like R,
which have been the favourites of North American relevant logicians. Instead, it
justifies weaker (depth-relevant) logics, like B. These have always been preferred

27 In a similar way, one cannot invoke the plausibility of the inference D& + o to justify the
reflexivity of the binary R in modal logic. If justification is to be forthcoming, this has to be in terms
of the meaning of the binary R.
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by Australian relevant logicians (such as myself), because of their applications to
naive truth theory and set theory.

4.8 Conclusion

Let me summarize. As we saw, for a semantics to provide a satisfactory model-
theoretic account of validity, it must be possible to understand it as an applied
(depraved) semantics. Routley-Meyer semantics, and especially its ternary rela-
tion, have always had a problem being seen in this light. We now see that they can
be. Specifically:

L. It is perfectly natural to understand the meaning of a conditional as a
function.

2. If one does this, then an intelligible meaning for the semantic ternary relation
is straightforward. Essentially, it records the results of applying the function
which the conditional expresses.

3. Understanding the meaning of the conditional in this way motivates the
relevant logic BT, though not stronger relevant logics, like R*.

Critics of the semantics of relevant logic have had a tendency to see them as
perverted—a turning away from true semantics. In particular, the ternary relation
has been taken to be depraved: that is, debased, corrupt (OED). What we have seen
is that it is not: its depravity is not of the vicious kind, but of the virtuous.?®
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